Concentration function for pyramid and quantum metric measure space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric and Mixing Sufficient Conditions for Concentration of Measure

We derive sufficient conditions for a family (Sn, ρn,Pn) of metric probability spaces to have the measure concentration property. Specifically, if the sequence {Pn} of probability measures satisfies a strong mixing condition (which we call η-mixing) and the sequence of metrics {ρn} is what we call Ψ-dominated, we show that (Sn, ρn,Pn) is a normal Lévy family. We establish these properties for s...

متن کامل

Space Filling with Metric Measure Spaces

We show a sharp relationship between the existence of space filling mappings with an upper gradient in a Lorentz space and the Poincaré inequality in a general metric setting. As key examples, we consider these phenomena in Cantor diamond spaces and the Heisenberg groups.

متن کامل

Concentration of measure effects in quantum information

Most applications of quantum information require many qubits, which means that they must be described using state spaces of very high dimension. The geometry of such spaces is invariably simple but often surprising. Subspaces, in particular, can be interpreted as quantum error correcting codes and, when the dimension is high enough, random subspaces form remarkably good codes. This is because i...

متن کامل

Hermitian metric on quantum spheres

The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.

متن کامل

Orthogonal metric space and convex contractions

‎In this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath  might be called their  definitive versions. Also, we show that there are examples which show that our main theorems are  genuine generalizations of Theorem 3.1 and 3.2 of [M.A. Miandaragh, M. Postolache and S. Rezapour,  {it Approximate fixed points of generalized convex contractions}, Fixed Poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2016

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/13282